
3.4 Optimal Block Decoding for Communications Over BSC

3.50. The decoding techniques (MAP and ML) discussed in the previous
section can be extended to the case in which we simultaneously consider n
consecutive channel output symbols resulted from having n input symbols.

Notation-wise, this simply means we consider an input-output vector pair
(X,Y) instead of an input-output symbol pair (X, Y )

3.51. By the memoryless property of the channel,

P
[
Y = y|X = x

] ≡ Q
(
y|x) = Q(y1|x1)×Q(y2|x2)× · · · ×Q(yn|xn).

Example 3.52. For a DMC in which X = {0, 1}, Y = {1, 2, 3}, Q =[
0.5 0.2 0.3
0.3 0.4 0.3

]
, find

(a) Q(122|100)
(b) Q(333|111)
Example 3.53. For BSC, find

(a) Q(101|100)
(b) Q(111|111)
3.54. For BSC,

Q(yi|xi) =
{

p, yi �= xi,

1− p, yi = xi.

Therefore,

Q
(
y|x) = pd(x,y)(1− p)n−d(x,y) =

(
p

1− p

)d(x,y)
(1− p)n, (9)

where d
(
x,y

)
is the number of coordinates in which the two blocks x and

y differ.
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3.55. To recover the value of x from the observed value of y, we can apply
the vector version of what we studied about optimal decoder in the previous
section.

• The optimal decoder is again given by the MAP decoder:

x̂MAP

(
y
)
= argmax

x
Q
(
y |x) p (x). (10)

• When the prior probabilities p (x) is unknown or when we want simpler
decoder, we may consider using the ML decoder:

x̂ML

(
y
)
= argmax

x
Q
(
y |x). (11)

Plugging-in

Q
(
y|x) = pd(x,y)(1− p)n−d(x,y) =

(
p

1− p

)d(x,y)
(1− p)n, (12)

from (9), gives

x̂MAP

(
y
)
= argmax

x

(
p

1− p

)d(x,y)
(1− p)np (x) (13)

= argmax
x

(
p

1− p

)d(x,y)
p (x) . (14)

and

x̂ML

(
y
)
= argmax

x

(
p

1− p

)d(x,y)
. (15)

3.56. Minimum-distance decoder as a ML decoding of block codes over
BSC:

From (15) (or directly from (9)), note that when p < 0.5, which is usually
the case for practical systems, we have p < 1 − p and hence 0 < p

1−p < 1.

In which case, to maximize Q
(
y|x), we need to minimize d

(
x,y

)
. In other

words, x̂ML

(
y
)
should be the codeword x which has the minimum distance

from the observed y:

x̂ML

(
y
)
= argmin

x
d
(
x,y

)
. (16)

In conclusion, for block coding over BSC with p < 0.5, the ML decoder is
the same as the minimum distance decoder.
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3.5 Repetition Code for Channel Coding in Communications Over
BSC

3.57. Recall that channel coding introduces, in a controlled manner,
some redundancy in the (binary) information sequence that can be used at
the receiver to overcome the effects of noise and interference encountered in
the transmission of the signal through the channel.
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Figure 12:
System model
for Section 3.5.
A channel en-
coder is added
to improve the
performance
of the system
considered in
Figure 11 in
Section 3.2.

• Note that variables X and Y are still used for the channel input and
channel output, respectively. However, as in Section 3.4, we consider
blocks (vectors) of them. Therefore, the variables used are X and Y.

• Because we introduce another box between the source encoder and the
(equivalent) channel, the output of the source encoder is not the same
as the channel input anymore. Therefore, we rename the output of the
source encoder as S. Again, when we consider a block of output from
the source encoder, we denote it by S.

• The job of the decoder is now to (correctly) guess the value of S. Its
output is now denoted by Ŝ.

◦ Usually, the mapping (by the channel encoder) from S to X is
bijective15; so is the mapping from W to S by the source encoder.

15A bijection, bijective function, or one-to-one correspondence is a function between the elements of two
sets, where each element of one set is paired with exactly one element of the other set, and each element
of the other set is paired with exactly one element of the first set.
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Therefore, one can also say that, as before, the job of the decoder is
still to (correctly) guess the value of X. Once we have the value of
X, we can directly map it back to S and then the original message
W .

3.58. Repetition Code: A simple example of channel encoding is to
repeat each bit n times, where n is some positive integer.

• Use the channel n times to transmit 1 info-bit

• The (transmission) rate is 1
n [bpcu].

◦ bpcu = bits per channel use

3.59. Two classes of channel codes

(a) Block codes

• To be discussed here.

• Realized by combinational/combinatorial circuit.

(b) Convolutional codes

• Encoder has memory.

• Realized by sequential circuit. (Recall state diagram, flip-flop, etc.)

Definition 3.60. Block Encoding: Take k (information) bits at a time
and map each k-bit sequence into a (unique) n-bit sequence, called a code-
word16.

Block Encoder

k bits k bits k bits n bits n bits n bits

• The code is called (n, k) code.

• Working with k-info-bit blocks means there are potentially M = 2k

different information blocks.
16Yes, we used this term already in Chapter 2. Both uses of the term “codeword” denote the outputs of

the encoding processes.
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◦ The table that lists all the 2k mapping from the k-bit info-block s
to the n-bit codeword x is called the codebook.

◦ The M info-blocks are denoted by s(1), s(2), . . . , s(M).
The correspondingM codewords are denoted by x(1),x(2), . . . ,x(M),
respectively.

index i info-block s codeword x

1 s(1) = 000 . . . 0 x(1) =

2 s(2) = 000 . . . 1 x(2) =
...

...
...

M s(M) = 111 . . . 1 x(M) =

possibilities

Choose from 
possibilities to be 

used as codewords.

Figure 13: The
mapping for
block encoding.

◦ By the bijective mapping from s to x,

pi ≡ p
(
x(i)

)
≡ P

[
X = x(i)

]
= P

[
S = s(i)

]
.

• To have unique codeword for each information block, we need n ≥ k.
Of course, with some redundancy added to combat the error introduced
by the channel, we need n > k.

◦ The amount of redundancy is measured by the ratio n
k .

◦ The number of redundant bits is r = n− k.

• Here, we use the channel n times to convey k (information) bits.

◦ The ratio k
n is called the rate of the code or, simply, the code rate.

◦ The (transmission) rate is R = k
n = log2 M

n [bpcu].
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Example 3.61. Find the codebook and code rate for the encoder which
uses repetition code with n = 5.

Example 3.62. To get some idea about the difficulty of finding an optimal
encoder, we need to consider the size of our search space. For k = 5 and
n = 10, how many encoders over BSC are possible?

3.63. When the mapping from the information block s to the codeword x
is invertible, the task of any decoder can be separated into two steps:

• First, find x̂ which is its guess of the x value based on the observed
value of y.

• Second, map x̂ back to the corresponding ŝ based on the codebook.

You may notice that it is more important to recover the index of the code-
word than the codeword itself. Knowing its index is enough to indicate
which info-block produced it.

Example 3.64. Repetition Code and Majority Voting: Back to Example
3.58.

First recall that

(1) MAP decoder is optimal. (It minimizes P (E)).
(2) ML decoder is suboptimal. However, it can be optimal (same P (E) as

the MAP decoder) when the codewords are equally-likely.

(3) ML decoder is the same as the minimum distance decoder when the
crossover probability of the BSC p is < 0.5 (which is usually the case).
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Therefore, minimum distance decoder can be optimal in many situations.
In this example, assume p < 0.5. Let 0 and 1 denote the n-dimensional

row vectors 00 . . . 0 and 11 . . . 1, respectively. Observe that

d
(
x,y

)
=

{
#1 in y, when x = 0,

#0 in y, when x = 1.

Therefore, the minimum distance decoder is

x̂ML

(
y
)
=

{
0, when #1 in y < #0 in y,

1, when #1 in y > #0 in y.

Equivalently,

ŝML

(
y
)
=

{
0, when #1 in y < #0 in y,

1, when #1 in y > #0 in y.

This is the same as taking a majority vote among the received bit in the
y vector.

The corresponding error probability is

P (E) =
n∑

c=�n
2�

(
n

c

)
pc(1− p)n−c.

For example, when p = 0.01, we have P (E) ≈ 10−5. Figure 14 shows how
we can view this as having the original BSC channel replaced by a new one
with better crossover probability.

Figure 15 compares the error probability when different values of n are
used.

• Notice that the error probability decreases to 0 when n is increased.
It is then possible to transmit with arbitrarily low probability of error
using this scheme.

• However, the (transmission) rate R = k
n = 1

n is also reduced as n is
increased.

So, in the limit, although we can have very small error probability, we suffer
tiny (transmission) rate.
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to be binary symmetric with crossover probability p.
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3.65. We may then ask “what is the maximum (transmission) rate of infor-
mation that can be reliably transmitted over a communications channel?”
Here, reliable communication means that the error probability can be made
arbitrarily small. Shannon provided the solution to this question in his
seminal work. We will revisit this question in the next chapter.
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